Appendix A
tiny-c Shell Commands

Command Name Arguments Description

¢ change [string-1/string-2/ Action: Replace string-1
with string-2 in the current
line; the slash (/) can be any
character not appearing
string-1 or string-2.

Default: If no arguments
are given, the previous
change command is repeated.

d delete n Action: Delete n lines,
starting at the current line.
Default: If not given, n is
taken to be 1.

Action: The program text is
searched forward starting at
the current line for the first
appearance of string; the
glash (/) may be any character

I locate fstring/

91

Command

a2

Name

print

exit

next

last

Arguments

filename

filename

(none)

Description

not appearing in string.
Default: If no argument is
given, the previous locate
commanid is repeated,

Action: Print n lines
starting with the current
line.

Default: If not given, n is
taken to be 1.

Action: The contents of the
file named filename are
appended to the end of the
program text.

Action: The contents of the
program text area are written
to the file named file name.

Action: tiny-c exits and
returns to DOS.

Action: The current line
number isincremented by
n.
Default: If not given, n
iz taken to be 1.

Action: The current line
number is decremented by
n.
Default: If not given, n is
taken to be 1.

Command

Name

status

Arguments

{none)

Description

Action: Prints the current
line number, the total
number of lines, the total
number of characters used,
and the total number of
characters unused.

a3

Appendix B

tiny-c Error Codes

— e ————— — ———— S I SRS L= L = I

1 lliegal statement

2 Cursor ran off end of program. Look for miss-
ing] or).

3 Symbol error. A name was expected. For ex-
ample, 10 + + will cause this.

5 Right parenthesis missing. as in x = (x + b+b.

6 Subscript out of range.

7 Using a pointer as a variahle or vice versa.

9 More expression expected, asin X = X +,

14 Illegal equal sign, as in 7=2

16 Stack overflow. Either an expression is too
tough or you are too deeply nested in functions
or a recursion has gone too deep.

17 Too many active functions.

18 Too many active variables.

19 Too many active values. Values share space
with program text. Squeeze the program and
this error may go away.

20 Startup error. Caused by a “garbage” line out-
side of all brackets [], i.e., where globals are
declared. A missing [or | can cause this.

21 Arguments needed and number given dom't
agree.

23 A function body must begin with [

24 An illegal invocation of MC.

26 Undefined symbol. Perhaps a variable name is
migspelled, or you need an int or char statement
for it, or a function jsn't loaded.

99 Program interrupted.

g5

Appendix C
The tiny-c
System Library

The system library includes functions that do input, output, and character manipula-
tion. The definitions given here show the declaration of the function name and the

arguments, if any.

gs char buffer(0)

ps char buffer (0)

pl char buffer(0)

pn int n

Reads a line, i.e., a string of characters terminated by a
carriage return, from the terminal and puts it in buffer. The
carriage return at the end of the line is changed to a null
byte. The value of the function is the number of characters
placed in buffer excluding the null byte. A value of 0 is
permitted.

Prints the string in buffer on the screen. A null byte signals
the end of the string. The null is not transmitted. The
number of characters transmitted is returned as the value
of the function.

The same as ps but prints the string on a new line. The
number of characters transmitted, not including the leading
return and line feed, is returned.

Prints the value of n on the screen preceded by a blank.

a7

gc

putchar char c

getchar

readfile char name (0},
where (0), limit (0)

int unit

writefile char name{0),
from(0), to(0)
int unit

num char b(5)
int v(0)

98

The number of characters transmitted, including the blank,
is returned.

Reads a line and returns the integer at the beginning of
the line. If there is no integer there, it prints “‘number
required” and tries again.

Reads a line and returns the first character on the line.

Transmits the character ¢ to the terminal. Any character,
including control characters, can be transmitted, except
that a quote is transmitted if ¢ is null. The character ¢ is
returned.

Reads and returns a character from the terminal. Any
character, including control characters, can be read by this
function.

Reads data from a file. The name argument is a character
string terminated by a null byte; where and limit are
pointers. The unit designator is an input/output unit
number. The file with name name is opened for reading
on device unit. All of its records are read and placed in
sequentially higher addresses, starting at where but in no
case going beyond limit. Then unit is closed. If successful,
the total number of bytes read is returned. If limit is
exceeded, the message “loo big" is printed and -2 is
returned.

Writes data to a file. The name argument is a character
string terminated by a null byte; from and to are pointers.
The unit argument is an input/foutput unit number.
Function writefile opens unit unit for output. The contents
of sequentially higher addresses from from to to inclusive
are written to unit as a file named name. Then the file is
closed. If successful, the total number of bytes written is
returned. If a problem occurs, a negative value is returned.

Converts a string of digits without leading sign or blanks

atoi char b(0)
int w(0)

ceqn char a(0), b{0)
intn

alpha char ¢

index char s1(0)

int n1
char s2(0)
int n2

move char a(0), b(0)

movebl char a(0), b(0)
int k

countch char a(0),
b{0), ¢

to the corresponding numeric value, which is put in v(0).
The first non-digit stops the conversion. At most, five digits
are examined. The number of bytes converted is returned
as the value of the function. Note that the second argument
must be a pointer to an integer.

Converts a character string of this form:

0 or more blanks

optional + or - character

{} or more blanks

0 to 5 digits
to its numeric value, which is put in ¥(0). The first non-
digit following the digit part stops the conversion. The
number of characters in b that were used to form the value
is returned as the value of the function.

Compares two character strings for equality for n
characters. Returns 1 on equals, 0 on not-equals.

Returns a 1 if ¢ is an alphabetic character, upper- or
lowercaze. Otherwize returns a 0,

Finds the leftmost copy of the character string 81, which
is n1 bytes long in the character string s2, which is n2 bytes
long. If 51 does not appear in 82, (1 is returned. If 1 does
appear, returns n+ 1 such that 82+ n points to the first
character of the copy in 82.

Moves string a into b up to and including the null byte of a.

Moves a block of storage up or down k bytes in memory;
a and b point to the first and last characters of the block

to be moved. If k is positive, the move is to higher
addresses, and if it is negative the move is to lower
addresses. If k is positive, the byte at b is moved first, then
the byte at b- 1, etc. If k is negative, the byte at a is moved
first. Large blocks thus can be moved a few bytes without
destruction.

Counts the instances of the character ¢ in the block of
storage from a to b inclusive and returns the count.

99

scann char from(0),
to (D), c
int n(0)

chrdy

pft char a(0), b{D)

fopen Int rw
char name(0)
int size, unit

fread char a(0)
int unit

fwrite char from(0},

to (0)
int unit

100

Scans from from to to inclusive for instances of the
character ¢. The integer n{0) is decremented for each ¢
found. If n(0) reaches 0, or if the character in to(0) is
examined, scann stops. Function scann returns the offset
relative to the pointer from to the last examined character.
Thus, if the third character position after from is the last
examined, scann returns 3.

Returns a copy of an input character from the terminal if
a character has been typed but not vet read by another
function, except that if the typed character is a null, a 1
is returned. If no unread character has been typed, a null
byte is returned. The character is not cleared so a
subsequent call to getchar or gc will return the same
character.

Transfers all characters from a to b inclusive to the screen.

Opens or creates a file for access on logical unit number
unit. The name variable contains a null-terminated string
giving the name of the file. The file is opened for reading
if rw is 1, and writing if rw is 2. If rw is 2 and the file does
not exist, then it will be created and its size guaranteed
to be at least size bytes. Otherwise size is ignored, but
it must be given. If no error is detected, a 0 is returned.
If an error is detected a nonzero value is returned.

Starting at a, reads into memory the next 512-byte record
of data from the file opened on unit number unit. The array
a must be large enough to hold an entire record. The length
in bytes of the record actually placed at a is returned as
the value of fread. A value of — 1 is returned if an end-of-
file is detected.

Writes one record with the bytes from from to to inclusive
to the file opened on unit number unit. This becomes the
next record of the file. Its length is to-from + 1; this is the
length that will be returned when the record is read by
fread.

fclose int unit

beep int f, d

The file opened on unit number unit is made permanent
and arrangements are made for end-of-file detection by

fread.

The beeper is sounded at frequency f for d tenths of a
second.

101

Appendix D

System and
User Machine Calls

for the IBM PC and PCjr

#

These machine calls are furnished with the tiny-c Interpreter. They are always loaded
and available for use, and are called as described in Chapter 4. The function number
is the last argument. Thus, MC 1 is called like this:

Where no results

Function:
Arguments:
Results:
Errors:
Action:

Function:
Arguments:
Results:
Errors:
Action:

MC ('x', 1)

are indicated, a zero is returned as the value of the MC.

MC(character, 1)

A character value.

None

None

character is transmitted to the screen.

MC(2)

None

A character value.

None

A character is retrieved from the console terminal and
returned as the value of the function. The input port from
the console terminal is cleared to receive another character.

103

Function:
Arguments:
Results:
Errors:
Action:

Function:
Arguments:
Resulis:
Errors:
Action:

Function:
Arguments:
Results:
Errors:
Action:

Function:
Arguments:
Resulis:
Errors:
Action:

Function:
Arguments:
Results:
Errors:
Action:

Function:
Arguments:
Results:

Errors:
Action:

Function:
Arguments:
Results:
Errors:
Action:

104

MC{mode, name, size, channel, 3)

A mode, file name, file size, and channel number.

An open status indicator.

None

Same as fopen in the standard library (see Appendix C).

MC (buffer, channel, 4)

Pointer and a channel number.

A get-status indicator.

None

Same as fread in the standard library (see Appendix C).

MC (from, to, 5)

Two pointers and a channel number.

A put-status indicator.

None

Same as fwrite in the standard library (see Appendix C).

MC (channel, &)

A channel number.

None

None

Same as fclose in the standard library (see Appendix C).

MC (from, to, byltes, 7)

Two pointers and an integer.

None

None

Same as moveb1 in the standard library (see Appendix C).

MC (from, to, character, 8)

Two pointers and a character value.

The number of appearances of the character between the
two pointers, inclusively.

None

Same as countch in the standard library (see Appendix C).

MC (from, to, character, nptr, 8)

Twao pointers, a character value, and an integer pointer.
A pointer to the last character examined.

None

Same as scann in the standard library (see Appendix C).

Function:
Arguments:
Results:
Errors:
Action:

Function:
Arguments:
Results:
Errors:
Action:

Function:
Arguments:
Results:
Errors:
Action:

Function:
Arguments:
Results:
Errors:
Action:

Function:
Arguments:
Results:
Errors:
Action:

Function:

Arguments:

Results:
Errors:
Action:

Function:
Arguments:
Results:
Errors:
Action:

MC (10)

MNone

None

None

An immediate return to the operating system.

MC (facts, start, first, last, 11)
Four pointers,

None

None

See Chapter 4.

MC (12)

None

A character value.

None

Same as chrdy in the standard library (see Appendix C).

MC (from, to, 13)

Two pointers.

MNone

None

Same as pft in the standard library (see Appendix C).

MC (n, 14)

An integer.

None

None

Same as pn in the standard library (see Appendix C).

MC (buffer, 15)

A character buffer.

None

None

Same as gs in the standard library (see Appendix C).

MC (start, bytes, character, 16)

A pointer, a number of bytes, a character.

None

None

The argument number of bytes starting at start are sel to
character.

105

Function:
Arguments:
Hesults:
Errors:
Action:

MC (frequency, duration, 17)

Two integers.

None

None

Same as beep in the standard library (see Appendix C).

In addition to the seventeen standard machine calls, the IBM PC and PCjr version
of tiny-c comes with three user machine calls. They are included primarily to
demonstrate the use of user machine calls. They implement an interface to the sound

system of the PCjr.

Function:
Arguments:
Results:
Errors:
Action:

Function:

106

MC (noise__type, attenuation, 1000)

Two integers.

None

None

The noise generator is turned on. The noise__type is coded
as follows:

periodic noise shifted at 6992 Hz
periodic noise shifted at 3496 Hz
periodic noise shifted at 1748 Hz
periodic noise shifted by tone voice 2
white noise shifted at 6992 Hz

white noise shifted at 3496 Hz

white noise shifted at 1748 Hz

white noise shifted by tone voice 2

=1 & N = Ld b = O

and the attenuation is coded as follows:

OFF
28 dB
26 dB
24 dB
22 dB
20 dB
18 dB
7 16 dB
8 14 dB
912dB
10 10 dB
11 BdB
12 6dB
13 4dB
14 2dB

oo o L3 DD e S

MC (voice, frequency, attenuation, 10{011

Arguments:
Results:
Errors:
Action:

Function:
Arguments:
Resulis:
Errors:
Action:

Three integers.

None

None

Tone generator voice is turned on at the frequency and
attenuation. Attenuation is coded as above and voice is 0, 1,
or 2.

MC (frequency, 1002)

An integer.

None

None

The frequency of the most recently mentioned tone
generator voice is changed to frequency.

107

Bibliography
R

Aho, Alfred, and Ullman, Jeffrey. Principles of Compiler Design. Reading, Mass.:
Addison-Wesley, 1978.

Brown, Peter. Writing Interactive Compilers and Interpreters. New York: John Wiley
and Sons, 1979.

BYTE Special Issue on The C Language. August 1983.

Feurzeig, Wally, et al. “Programming Languages as a Conceptual Framework for
Teaching Mathematics.” BBN Report No. 2165, June 1971,

" Duncan, Ray. “tiny-c Interpreter on CDOS.” Dy. Dobb's Jowrnal. May 1979.

Gibson, Tom. “Caution: Structured Programming Can Be Habit-Forming.” Creative
Computing, January 1979.

Gibson, Tom, and Guthery, Scott. “*Structured Programming, C and tiny-c.” Dr. Dobb s
Jowrnal, May 1980.

Gilbreath, Jim. ““A High-Level Language Benchmark.” BYTE, September 1981,

Gries, David. ““On Structured Programming—A Reply to Smoliar.” CACM, November
1974.

Hancock, Les. “*Growing, Pruning and Climbing Binary Trees with tiny-c.” Dr. Dabb's
Jowrnal, June/July 1979.

Hancock, Les, and Krieger, Morris. The C Primer. New York: McGraw-Hill, 1983.

Hughes, Phillip. “BASIC, Pascal or tiny-c.”” BYTE, October 1981.

Kemeny,].G., and Kurtz, T.E. BASIC Programming. New York: John Wiley and Sons,
1967.

Kern, Christopher. ‘A User’s Look at tiny-c."” Byte, December 1979,

149

Kernighan, Brian, and Plauger, P. J. Software Tools. Addison-Wesley, 1967.

Kernighan, Brian, and Ritchie, Dennis. The C Programming Language. Englewood
Cliffs, N.].: Prentice-Hall, 1978,

Kernighan, Brian, and Pike, Rob. The UNIX Programming Environment. Englewood
Cliffs, N.J.: Prentice-Hall, 1984.

Madden, J. Gregory, “‘C: A Language for Microprocessors?”’ BYTE, October 1977,

MelIntire, Thomas. Software Interpreters for Microcomputers. New York: John Wiley and
Sons, 1978. -

Ritchie, Dennis and Thompson, Ken. “The UNIX Time-Sharing System.” CACM,
March 1974.

Ritchie, Deanis, et al. “The C Programming Language.” Murray Hill, N.].: Bell
Telephone Laboratories, October 1975,

Ritchie, Dennis; Johnson, Steve; Lesk, Michael; and Kernighan, Brian. “The C
Programming Language.” Dr. Dobbs fournal, May 1980,

Sargent, Murray, and Shoemaker, Richard, The IBM Personal Computer from the Inside
(i, Reading, Mass.: Addison-Wesley, 1984.

Snyder, Alan. ““A Portable Compiler for the Language C."" MIT Project MAC Technical
Repaort 149, May 1975.

Wexelblat, Richard. “The Consequences of One's First Programming Language.”
Software + Practice and Experience, Vol. 11, 1980,

Zahn, Carl. Notes: A Guide to the C Programming Language. New York: Yourdon Press,
1979.

150

Index

A
ANALYZE.C, 78, 125
mpostrophe, 29
spplication level, 54, 81
writhmatic, computer, 38
array, 30
assignment, 36

B
BASIC, vil, wiv, wvi, 20
Batl Telaphone Laboratories, viil

naming conventions, 29
omission of parentheses, 46
systam, B0

usa of namas in, 31

valua of, 16

function lable, 68

G
Gibson, Thomas A., i
GLDECL.H, 124
global variable, 16, 18
GOTO statement, 18
Gries, David, 18

H
hello__world function, 1

[
IBM Guide fo Operations, xiv
Il stalsmant, 15, 41
nesting, d4
H-Els# statamanl. 41
indentation, 21
Iintegar varabla, 14
Interpreter, xvil, 50
customization routines, B3
data spaces, 85
function lable, 68
listing of, 121
machine call routines, B
scanning lools, 74

151

not-sgual-io L 14
null string, with pi function, 15
Nl.rrl::r&uﬁnnﬂum prOgram,
1
[+
operatons
ar
table of, 35
overfiow, 17, 38

152

program
definition of, 3
running, 7
squeazing. 54

program buMler, 5, B
programming , X

Q
quotes, 29

R
ramalnder oparator, 16
Asturn statemant, 16, 43
Ritchie, Dannis, vili

s
SCAMNLC, 75,135
Shell, 4, 53
adding commands, 57
command functions (table), 58
commands, 5, 81

g
stataman! analyrer, routine

2388338
L
$2 82 0% o

H
285

I

-
=

o L]

88 g

mmmmmt
iw_.l

'I4 45, 87

g

Hhalnni

mn&ﬂ»

mnmmmm mmmMm

vEHMMwﬁmmeE

u
2

While statemant, 14, 42
nesting, 44

Unix, wili
UTILITY.C, 85, 141
variable

mm

n

8
At

163

Edited by Staphen Moo

